Analysis of partial volume effects in diffusion-tensor MRI.
نویسندگان
چکیده
The diffusion tensor is currently the accepted model of diffusion in biological tissues. The measured diffusion behavior may be more complex when two or more distinct tissues with different diffusion tensors occupy the same voxel. In this study, a partial volume model of MRI signal behavior for two diffusion-tensor compartments is presented. Simulations using this model demonstrate that the conventional single diffusion tensor model could lead to highly variable and inaccurate measurements of diffusion behavior. The differences between the single and two-tensor models depend on the orientations, fractions, and exchange between the two diffusion tensor compartments, as well as the diffusion-tensor encoding technique and diffusion-weighting that is used in the measurements. The current single compartment model's inaccuracies could cause diffusion-based characterization of cerebral ischemia and white matter connectivity to be incorrect. A diffusion-tensor MRI imaging experiment on a normal human brain revealed significant partial volume effects between oblique white matter regions when using very large voxels and large diffusion-weighting (b approximately 2.69 x 10(3) sec/mm(2)). However, the apparent partial volume effects in white matter decreased significantly when smaller voxel dimensions were used. For diffusion tensor studies obtained using typical diffusion-weighting values (b approximately 1 x 10(3) sec/mm(2)) partial volume effects are much more difficult to detect and resolve. More accurate measurements of multiple diffusion compartments may lead to improved confidence in diffusion measurements for clinical applications.
منابع مشابه
DT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملDifferentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کاملAnisotropic Acquisition and Analysis for Diffusion Tensor Magnetic Resonance Imaging
Diffusion tensor magnetic resonance imaging (DT-MRI) is a non-invasive imaging method for assessing the characteristics and organization of tissue microstructure. The diffusion tensor provides information about the magnitude, anisotropy, and orientation of water diffusion in biological tissues. In brain white matter, the direction of greatest diffusivity is typically assumed to be parallel to t...
متن کاملJoint Fractional Segmentation and Multi-tensor Estimation in Diffusion MRI
In this paper we present a novel Bayesian approach for fractional segmentation of white matter tracts and simultaneous estimation of a multi-tensor diffusion model. Our model consists of several white matter tracts, each with a corresponding weight and tensor compartment in each voxel. By incorporating a prior that assumes the tensor fields inside each tract are spatially correlated, we are abl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 45 5 شماره
صفحات -
تاریخ انتشار 2001